太阳成集团61999

张伟刚

师资队伍

  • 张伟刚
    性别 : 所属部门 : 现代光学研究所
    职称 : 教授 学历 : 博士
    行政职务 : 所学专业 : 光学,光学工程
    办公电话 : 022-23508586,13920359129
    邮箱 : zhangwg@nankai.edu.cn, jwczwg@nankai.edu.cn
    研究方向 : 光纤光子学与现代通信传感技术,光纤及微纳结构,光纤光栅及应用

个人简历

张伟刚教授,博士生导师,哈尔滨工业大学理论物理学硕士,我校光学博士。现任我校电子信息与光学工程学学院现代光学研究所教授,《中国激光》杂志常务编委,《Chinese Physics Letter》特约评审,《中国测试》编委;中国光学学会光电技术专业委员会委员,中国仪器仪表学会“光机电技术与系统集成”分会常务理事;天津市光学学会和激光学会常务理事;中国高等教育学会理科教育专业委员会常务理事,教育部高等学校电子信息类专业系列教材编审委员会委员,教育部高等学校光电信息科学与工程专业教学指导分委会协作委员。曾担任OECC/COIN 2004和ICOCN2010国际学术会议TPCM。Optics Letters、Optics Express、IEEE Photonics Technology Letters、Sensors & Actuators: B. Chemical、Applied Optics、Optical Communications等期刊审稿人。 
  从事科研和教学工作30多年,20世纪90年代初从事光波导传输与测试、计算机信息系统及技术的研发工作;20世纪90年代中后期进入光通信和光传感领域,在光纤光栅传感器件的设计、研制方面取得了诸多创新性研究成果。承担并作为骨干成员参加国家科技部863计划、973计划以及国家自然科学基金等10多项课题;获天津市科技发明一等奖、二等奖各1项;出版专著及教材8部,发表被SCI、EI、ISTP收录论文200多篇,获国家发明及实用新型专利20多项;获国家级教学成果二等奖3项,主持国家级精品课“科研方法论”和国家级精品视频公开课“科学素养与培育”;培养博士、硕士50多人。 
  我校现代光学研究所光电子学课题组目前承担国家863、973、国家重点和面上基金以及博士点基金等多项课题,本所现有光学及光学工程两个博士后流动站。每年按计划招1-2名博士生和2名硕士生,同时选收本科生参加课题研究。科研理念:勤奋,钻研,互助,共赢;培养宗旨:学有所得,研有所获,研学结合,收获硕果。欢迎加盟本课题组(包括博士后、访问学者等研究人员)。2019年招收考核入学或统招博士生1名,招收保研及统招硕士研究生2名,导师联系电话13920359129。

科研项目/成果/获奖/专利

将科研方法引入光电信息专业课程的研究性教学方法探索与实践----2016-07-01到2017-06-30

基于光纤干涉矢量传感地面沉降监测与防控关键技术研究----2015-04-01到2018-03-31

空间交错式微结构光纤光栅矢量传感研究----2013-01-01到2015-12-31

基于折射率多维调制结构的空间光纤光栅理论与应用研究----2013-01-01到2016-12-31

光纤微腔流体传感系统研究及其环境监测新技术开发----2010-04-01到2013-03-31

基于飞秒激光刻蚀微腔的光子晶体光纤流体传感研究----2010-01-01到2012-12-31

用于流体微量成分高灵敏度在线检测的光纤CRDS传感系统研究----2007-01-01到2009-12-01

微结构光纤多维传感的理论和实验研究----2006-01-01到2006-12-01

光子晶体光纤光栅及其器件的研制----2004-01-01到2005-12-01

光纤光栅传感器封装技术研究及光纤光栅压力加速器研制----2003-01-01到2004-12-01

其他纵向项目----1980-01-01到2010-01-01


曲面光纤光栅的理论和传感应用研究----2019-01-01到2022-12-31

复合型光纤光栅温度与应变同步传感技术----2018-03-28

有源光纤与无源光纤性能测试----2016-04-28

其他横向项目----1980-01-01

复合型光纤光栅温度与应变同步传感技术----2018-03-28

有源光纤与无源光纤性能测试----2016-04-28

其他横向项目----1980-01-01


论文/专著/教材

一. 近期主要学术论文 
 1. "Ringing phenomenon in chaotic microcavity for high-speed ultra-sensitive sensing". Scientific Reports, 2016, 6, 38922[(doi: 10.1038/srep38922(2016)]. 
 2. "Realizing torsion detection using berry phase in an angle-chirped long-period fiber grating". Optics Express, 2017, 25 (12): 13448-13454. 
 3. "Microfiber Interferometer with Surface Plasmon-Polaritons Involvement". Optics Letters, 2016, 41 (7): 1309-1312. 
 4. "In-line polarization rotatorbased on the quantum-optical analogy". Optics Letters, 2016, 41 (9): 2113-2116. 
 5. "Reconfigurable and ultra-sensitive in-line Mach-Zehnder interferometer based on the fusion of microfiber and microfluid". Applied Physics Letters, 2015, 106 (8): 084103 (5pp) 
 6. "Helicalfiber interferometer using flame-heated treatment for torsion sensing application", IEEE Photonics Technology Letters, 2017, 29 (1): 161- 164. 
 7. "Bending vector sensor based on a pair of opposite tilted long-period fiber gratings". IEEE Photonics Technology Letters, 2017, 29 (2): 224- 227. 
 8. "Two-Dimensional Bending Vector Sensor Based on the Multimode-3-Core-Multimode Fiber Structure". IEEE Photonics Technology Letters, 2017, 29 (10): 822-825. 
 9. "Mach-Zehnder Interferometer Based on Interference of Selective High-order Core Modes". IEEE Photonics Technology Letters, 2016, 28 (1): 71-74. 
 10. "Bidirectional Torsion Sensor Based on a Pair of Helical Long-Period Fiber Gratings". IEEE Photonics Technology Letters, 2016, 28(15): 1700-1702. 
 11. "Bending Vector Sensor Based on the Multimode-2-Core-Multimode Fiber Structure". IEEE Photonics Technology Letters, 2016, 28 (19): 2066-2069. 
 12. "Fiber refractive index sensor based on dual polarized Mach-Zehnder interference caused by a single mode fiber loop". Applied Optics, 2016, 55 (1): 63-69. 
 13. "A Two-Dimensional Medium-High Frequency Fiber Bragg Gratings Accelerometer". IEEE Sensors Journal, 2017, 17 (3): 614- 618. 
 14. "High-sensitivity temperature-independent force sensor based on PS-LPFG formed by inserting a microbend". Journal of Optics, 2017, 19 (3): 035801 (4pp). 
 15. "CO2-laser-induced Long-period Fiber Gratings in Few Mode Fibers". IEEE Photonics Technology Letters, 2015, 27 (2): 145-148. 
 16. "Fiber-optic bending vector sensor based on a sector long-period grating interferometer", IEEE Photonics Technology Letters, 2015, in press. 
 17. "A Fiber Bending Vector Sensor Based on M-Z Interferometer Exploiting Two Hump-Shaped Tapers", IEEE Photonics Technology Letters, 2015, in press. 
 18. "In-fiber torsion sensor based on dual polarized Mach-Zehnder interference", Optics Express, 2014, 22 (26): 31654-31664. 
 19. "Simultaneous measurement of temperature and force with high sensitivities based on filling different index liquids into photonic crystal fiber". Optics Letters, 2013, 38 (7): 1071-1073. 
 20. "Fiber in-line Mach–Zehnder interferometer based on nearelliptical core photonic crystal fiber for temperature and strain sensing". Optics Letters, 2013, 38 (20): 4019–4022. 
 21. "Fiber-optic bending vector sensor based on Mach–Zehnder interferometer exploiting lateral-offset and up-taper", Optics Letters, 2012, 37 (21): 4480-4482. 
 22. "Two-dimensional bending vector sensing based on spatial cascaded orthogonal long period fiber", Optics Express, 2012, 20 (27): 28557-28562. 
 23. "Microfiber-enabled in-line Fabry-Pérot interferometer for high-sensitive force and refractive index sensing", Journal of Lightwave Technology, 2014, 32 (9): 1682-1688. 
 24. "Design for a single-polarization photonic crystal fiber wavelength splitter based on hybrid-surface plasmon resonance", Photonics Journal, 2014, 6 (4):2200909(9pp). 
 25. "Simultaneous force and temperature measurement using a compact S fiber taper embedded in a fiber Bragg grating". IEEE Photonics Technology Letters, 2014, 26 (3): 309-312. 
 26. "Polarization Rotator Based on Hybrid Plasmonic Photonic Crystal Fiber". IEEE Photonics Technology Letters, 2014, 26 (22): 2291-2294. 
 27. "Real time and simultaneous measurement of displacement and temperature using fiber loop with polymer coating and fiber Bragg grating", Review of Scientific Instruments, 2014, 85, 075002 (6pp). 
 28. Controlled-X gate with cache function for one-way quantum computation, Physical Review A, 2012, 85, 032317-1~ 
 032317-5. 
 29. "Long period fiber grating cascaded to S fiber taper for simultaneous measurement of temperature and refractive index refractive index". Photonics Technology Letters, 2013, 25 (9): 888-891. 
 30. "Design of Broadband Single-Polarization Single-Mode Photonic Crystal Fiber Based on Index-Matching Coupling", IEEE Photonics Technology Letters, 2012, 24 (6): 452-454. 
 31. "Orthogonal Single-Polarization Single-CorePhotonic Crystal Fiber for Wavelength Splitting", IEEE Photonics Technology Letters, 2012, 24 (20): 1878-1881. 
 32. "Highly Sensitive In-Fiber Refractive Index Sensor Based on Down-Bitaper Seeded Up-Bitaper Pair", IEEE Photonics Technology Letters, 2012, 24 (15): 1304-1306. 
 33. Ultrasensitive refractive index sensor based on microfiber-assisted U-shape cavity. Photonics Technology Letters, 2013, 25 (18): 1815-1818. 
 34. Corrugated long-period fiber gratings based on periodically burning optical fiber coating by CO2 laser and HF acid etching. Photonics Technology Letters, 2013, 25 (20):1961-1964. 
 35. "Design of Single-Polarization Wavelength Splitter based on Photonic Crystal Fiber. Applied Optics, 2011, 50(36): 6576- 5582. 
 36. "Fiber modal interferometer with embedded fiber Bragg grating for simultaneous measurements of refractive index and temperature". Sensors & Actuators: B. Chemical, 2013, 188: 931-936. 
 37. "Fiber Mach-Zehnder interferometer based on concatenated down- and up-tapers for refractive index sensing applications", Optics Communications, 2013, 288: 47–51. 
 38. "All-fiber intermodal Mach–Zehnder interferometer based on a long-period fiber grating combined with a fiber bitaper", Optics Communications, 2012, 285: 3935–3938. 
 39. "Investigation on an evanescent wave fiber-optic absorption sensor based on fiber loop cavity ring-down spectroscopy", Optics Communications, 2010, 283 (2): 249-253. 
 40. "Temperature and twist characteristics of cascaded long-period fiber gratings written in polarization-maintaining fibers".Journal Optics, 2012, 14: 105403 (4pp). 
 41. "Fabrication on Twisted Long Period Fiber Gratings with High Frequency CO2 Laser Pulses and its Bend Sensing". Journal Optics, 2013, 15: 075402 (6pp). 
 42."Simultaneous measurement of curvature and temperature based on LP11 mode Bragg grating in seven-core fiber". Measurement Science and Technology, 2017, 28, 055101(5pp). 
 43. "Simultaneous measurement of temperature and refractive index using a simplified modal interferometer based on tilted long-period fiber grating". Measurement Science and Technology, 2013, 24 (6): 065103(5pp). 
 44. "Two-channel Fiber Micro–cavity Strain sensor based on Fiber Loop Ring-Down Spectroscopy Technology", Microwave and Optical Technology Letters, 2012, 54 (5): 1305-1309. 
 45. "Design and fabrication of period interlaced ULPG that inhibit specific resonance peaks", Microwave and Optical Technology Letters, 2011, 53(7):1470-1472. 
 46. "Torsion sensing characteristics of fibre ring laser based on nonlinear polarization rotation", Electronics Letters, 2012, 48 (2): 116-118. 
 47. "Temperature- and strain-insensitive torsion sensor based on a phase-shifted ultra long period grating", Electronics Letters, 2012, 48 (4): 235-236. 
 48. Characteristics of Twist and Residual Stress Relief Based Cascaded Long Period Fiber Gratings. Optik, 2013, in press. 
 49. A tunable comb filter using SMF-MMF-PMF single-mode/multimode/polarization-maintaining-fiber-based Sagnac fiber loop. Chinese Physics B, 2013, 22 (6): 064216-1~064216-4. 
 50 "新型长周期光纤光栅的设计与研制进展". 物理学报, 2017, 66 (7): 070704 (20pp). 
 51. "飞秒激光刻蚀非平行壁光纤微腔Mach-Zehnder干涉仪特性及其流体传感研究", 物理学报, 2012, 61 (17): 170701-1-170701-8. 
 52. "飞秒激光刻蚀V型光纤微腔及其干涉谱特性". 光学学报, 2011, 31(7):0706007-1-6. 
 53. "新型宽带单偏振单模光子晶体光纤的设计". 光学学报, 2011, 31 (7) :0706001-1-5 
 54. "高频CO2激光脉冲写制的倾斜长周期光纤光栅光谱特性研究". 光学学报, 2011, 31 (8): 0806006-1-6. 
 55. "引入调制结构形成的相移长周期光纤光栅研究". 光学学报, 2011, 31(6):0606006-1-5. 
 56. "维生素B2固体粉末荧光偏振特性及其检测". 中国激光, 2012, 39 (6): 0615001-1-7. 
 57. "基于腔衰荡光谱技术的光纤微腔温度传感器". 中国激光,2011, 38(9): 0905004-1-5. 
 二. 专著及教材 
 1. 新型光纤光栅——设计、技术及应用, 上海交通大学出版社, 2016年. 
 2. 光波学原理与技术应用, 清华大学出版社, 2013年第1版, 2017年第2版. 
 3. 光纤光学原理及应用, 清华大学出版社, 2012年第1版, 2017年第2版. 
 4. 职工科学素养提升, 中国工人出版社, 2017年. 
 5. 科学素养与培育, 科学出版社, 2015年. 
 6. 科研方法导论, 科学出版社, 2009第1版, 2015第2版. 
 7. 科研方法论, 天津大学出版社, 2006年第1版, 2007第2版. 
 8. 专业技术人员科学素养与科研方法, 国家行政学院出版社, 2013年. 
 9. 专业技术人员科研方法与论文写作, 国家行政学院出版社, 2009年.

讲授课程

 光纤光学及应用,光纤光学与技术,薄膜物理,科研方法论,科研方法及应用,科学素养与培育

       

社会兼职

 《中国激光》常务编委,《Chinese Physics Letter》特约评审,《中国测试》编委;中国仪器仪表学会“光机电技术与系统集成”分会常务理事,教育部高等学校光电信息科学与工程专业教学指导分委会协作委员,天津市光学学会和激光学会常务理事;中国高等教育学会理科教育专业委员会常务理事,教育部高等学校电子信息类专业系列教材编审委员会委员。
Baidu
sogou